Circle: Constructions

Important Concepts

1. Construction of a tangent from a point on the circle Steps of construction:
2. Take a point R on the circle.
3. Join $O R$ and Construct $\angle O R Q=90^{\circ}$.
4. Produce $Q R$ to P to get $P R Q$ as required tangent.
5. Construction of a tangent from a point outside the circle
6. Take a point M outside the circle.
7. Join the centre O with the point M .
8. Draw perpendicular bisector of line OM, which intersect OM at N .
9. Taking N as a centre and NM as a radius draw a circle which intersects the given circle at two points A and B. Join MA and MB to get the required tangents.
10. Construction of tangents to a given circle from an exterior point when the centre of the circle is not known.
11. Draw any secant PAB to the circle.
12. Draw the perpendicular bisector of $P B$. Let M be the midpoint of PB.
13. Taking M as centre and MP as radius, draw a semi circle.
14. At A, draw a perpendicular to PB. Let this perpendicular meet the semicircle at C .
15. Taking P as centre and $C P$ as radius, draw an arc to meet the given circle at two points, say Q and R.
16. Join $P Q$ and $P R$. Then $P Q$ and $P R$ are the required tangents from P to the given circle.

17. To construct the circumscribing circle of a triangle

18. Consider a triangle $A B C$.
19. Draw perpendicular bisectors of any two sides say $A B$ and $B C$ and let them intersect at O .
20. Taking O as a centre and OB as radius draw the circle, this circle must pass through A, B and C.
21. To construct a in-circle in a triangle

22. Consider a triangle $A B C$.
23. Draw angle bisector of angle A and B, which intersect at a point I.
24. Draw a perpendicular from I on $A B$, which intersect $A B$ at M.
25. Taking I as a centre and IM as radius draw the circle. This gives the required in circle.
26. To construct a circle in a given regular hexagon:

27. Construct a regular hexagon of side $=4 \mathrm{~cm}$.
28. Draw bisectors of $\angle \mathrm{A}$ and $\angle \mathrm{B}$. Let these bisectors meet at the point I .
29. From I draw IN perpendicular to ED
30. Draw a circle, with I as centre and IN as radius.

This is the required circle inside the regular hexagon.
7. To construct a circle about a given regular hexagon.

1. Construct a regular hexagon with side $=3 \mathrm{~cm}$
2. Draw the perpendicular bisectors of the sides $A B$ and $B C$. Let these bisectors meet at the point O.
3. Draw a circle, with O as centre and radius OA.

This is the required circle about the regular hexagon.

