Co-ordinate Geometry

Co-ordinate Geometry is the branch of mathematics in which algebraic methods are used to solve geometrical problems.

Cartesian Plane

1. Two perpendicular number lines intersecting at point zero are called coordinate axes. The horizontal number line is the x-axis (denoted by $X^{\prime} O X$) and the vertical one is the \boldsymbol{y}-axis (denoted by $Y^{\prime} O Y$). The point of intersection of x-axis and y-axis is called origin and denoted by ' O '.
2. Cartesian plane is a plane obtained by putting the coordinate axes perpendicular to each other in the plane. It is also called coordinate plane or xy plane.
3. The \mathbf{x}-coordinate of a point is its perpendicular distance from y-axis. The y-coordinate of a point is its perpendicular distance from x-axis.
4. The point where the x axis and the y axis intersect is represented by coordinate points $(0,0)$ and is called the origin.
5. The abscissa of a point is the x-coordinate of the point. The ordinate of a point is the y-coordinate of the point.
6. If the abscissa of a point is x and the ordinate of the point is y, then (x, y) are called the coordinates of the point.
7. The axes divide the Cartesian plane into four parts called the quadrants (one fourth part), numbered I, II, III and IV anticlockwise from OX.
8. Sign of coordinates depicts the quadrant in which it lies.

9. The coordinates of a point on the x-axis are of the form $(x, 0)$ and that of the point on y-axis are $(0, y)$.
10. To plot a point $P(3,4)$ in the Cartesian plane, start from origin and count 3 units on the positive x axis then move 4 units towards positive y axis. The point at which we will arrive will be the point $P(3,4)$.

11. If $x \neq y$, then $(x, y) \neq(y, x)$ and if $(x, y)=(y, x)$, then $x=y$.

Graphing a Linear Equation

1. The Cartesian plane can be used to graph different kinds of situations from everyday life.
2. A line graph which is a whole unbroken line is called a linear graph.
3. Two quantities which vary directly can be plotted as a linear graph. Independent variable is generally taken on x axis the dependent variable is taken on y axis.
4. Steps to draw a graph:
I. Find out the relation between y and x.
II. Calculate different values of y corresponding to the values of x.
III. Tabulate the results.
IV. Plot the points.
V. Join the points to obtain the graph.
5. By looking at a linear graph, we can find out the ' y ' coordinate (or ' x ' coordinate) in relation to any point on the ' x ' axis (or ' y ' axis).
6. $x=0$ is the equation of the y-axis and $y=0$ is the equation of the x-axis.

Inclination and Slope

1. The angle which a straight line makes with the positive direction of the x-axis (measured in the anticlockwise direction) is called inclination of the line.
The inclination of the line is usually denoted by θ (theta).
In the below figure, $\theta=45^{\circ}$

2. If θ is the inclination of a line then slope of the line is $\tan \theta$ and is usually denoted by letter m.

Slope $=m=\tan \theta$.
For x-axis and every line parallel to x-axis, the inclination $\theta=0^{\circ}$.
Hence, Slope $(\mathrm{m})=\tan \theta=\tan 0^{\circ}=0$
For y-axis and every line parallel to y-axis, the inclination $\theta=90^{\circ}$.
Hence, Slope $(\mathrm{m})=\tan \theta=\tan 90^{\circ}=$ not defined

Y-Intercept

If a straight line meets y-axis at a point, the distance of this point from the origin is called y-intercept and is usually denoted by the letter c.

For x -axis, y -intercept $=0$
For every, line parallel to y-axis, y-intercept $=0$.
Y-intercept is positive if measure above the origin and negative if measured below the origin.

Steps to find Slope and the Y-Intercept of a given line ($a x+b y+c=0$):

1. Make y, the subject of the equation.
$\Rightarrow y=\frac{-a}{b} x-\frac{c}{b}$
2. The coefficient of x is the slope.
\Rightarrow slope (m) $=\frac{-\mathrm{a}}{\mathrm{b}}$
3. The constant term is the y-intercept of the given line.
$\Rightarrow \mathrm{y}$-int ercept $=\frac{-\mathrm{C}}{\mathrm{b}}$
