Distance Formula

1. The distance between $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$.

This is known as the distance formula.
2. The distance of a point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ from origin is $\sqrt{x^{2}+y^{2}}$.
3. The points A, B and C are collinear if $A B+B C=A C$.
4. Three points A, B and C are the vertices of an equilateral triangle if $A B=B C=C A$.
5. The points A, B and C are the vertices of an isosceles triangle if $A B=B C$ or $B C=C A$ or $C A=A B$.
6. Three points A, B and C are the vertices of a right triangle if sum of squares of any two sides is equal to the square of the third side.
7. For the given four points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D :
a. $A B=B C=C D=D A ; A C=B D \Rightarrow A B C D$ is a square.
b. $A B=B C=C D=D A ; A C \neq B D \Rightarrow A B C D$ is a rhombus.
c. $A B=C D, B C=D A ; A C=B D \Rightarrow A B C D$ is a rectangle.
d. $A B=C D, B C=D A ; A C \neq B D \Rightarrow A B C D$ is a parallelogram.
8. Circumcentre is the point of intersection of the perpendicular bisectors of the sides of the triangle.

O is the circumcentre of the triangle $A B C$.

