Equation of a Line

Important Concepts

1. The angle which a straight line makes with the positive direction of x-axis measured in the anticlockwise direction is called the inclination (or angle of inclination) of the line. The inclination is usually denoted by θ.
2. If θ is the inclination of a line I, then $\tan \theta$ is called the slope or gradient of the line I.
3. The slope of a line whose inclination is 90° is not defined.
4. The slope of x-axis is zero and slope of y-axis is not defined.
5. Three points A, B and C are collinear if Slope of $A B=$ slope of $B C$.
6. Let $A B$ be a line cutting x-axis and the y-axis at $A(a, 0)$ and $B(0, b)$ respectively. Then the intercepts made on the axes are a and b respectively. That is, x-intercept $=a$ and y-intercept $=b$.
7. The equation of line parallel to x-axis at a distance a in the positive direction of y-axis is $y=a$ and in negative direction of y-axis is $y=-a$.

Slope of a line

The slope m of the line through the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.

Parallel and Perpendicular Lines

1. Two non-vertical lines I and m are parallel if and only if their slopes are equal.

That is $\mathrm{m}_{1}=\mathrm{m}_{2}$
2. Two non-vertical lines are perpendicular to each other if and only if their slopes are negative reciprocals of each other.

That is $m_{2}=\frac{-1}{m_{1}} \Rightarrow m_{1} \times m_{2}=-1$

Condition for Collinearity of Points

Three points A, B and C are collinear if Slope of $A B=$ slope of $B C$

Equation of coordinate axes

1. The equation of x-axis is $y=0$
2. The equation of y-axis is $x=0$

Various Forms of the Equations of Straight Lines

Slope-intercept form: The equation of a line having slope m and y-intercept c is given by $\mathbf{y}=\mathbf{m x} \boldsymbol{+}$.

Point-Slope form: The equation of a line passing through $\left(x_{1}, y_{1}\right)$ and having slope m is given by
$y-y_{1}=m\left(x-x_{1}\right)$.

Two-point form: The equation of line passing through two points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ is given by $\frac{y-y_{1}}{x-x_{1}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

