Factorisation

Important concepts

1. When a polynomial is the product of two or more polynomials, each of the later polynomials is called its factors.
2. The method of expressing a given polynomial as a product of two or more polynomials is called factorization.
3. If a given polynomial contains a common factor which may be either a constant or a variable, we divide each term separately by this factor.

Example: Each term of the expression $3 a^{2}-9 a b$ has $3 a$ as a common factor.

Therefore, we have $3 a^{2}-9 a b=3 a(a-3 b)$
4. If the polynomial has even number of terms, then the terms are first arranged in groups such that each group has a common factor.

Example: Factorise : $a^{3}+a-3 a^{2}-3$

$$
\begin{aligned}
a^{3}+a-3 a^{2}-3 & =\left(a^{3}-3 a^{2}\right)+(a-3) & & {[\text { Forming groups }] } \\
& =a^{2}(a-3)+1(a-3) & & {[\text { Taking out common factors from each group }] } \\
& =(a-3)\left(a^{2}+1\right) & & {[\text { Taking }(a-3) \text { common }] }
\end{aligned}
$$

5. If the polynomial is trinomial in nature, i.e. , it has 3 terms ,we first arrange the terms in descending order. Then, split the middle term in such a way that the product is equal to the product of first and the last term.

Example: Factorise $\mathrm{a}^{2}+10 \mathrm{a}+24$

$$
\begin{array}{rlrl}
a^{2}+10 a+24 & =a^{2}+6 a+4 a+24 & & {[\text { since } 6+4=10 \text { and } 6 \times 4=24]} \\
& =a(a+6)+4(a+6) & {[\text { Taking out common factors from each group }]} \\
& =(a+6)(a+4) & & {[\text { Taking }(a+6) \text { common }]}
\end{array}
$$

6. Factorisation using difference of two squares: $x^{2}-y^{2}=(x+y)(x-y)$

$$
\begin{aligned}
& \text { Example : Factorise } \begin{aligned}
& 9 a^{2}+3 a-8 b-64 b^{2} \\
9 a^{2}+3 a-8 b-64 b^{2} & =9 a^{2}-64 b^{2}+3 a-8 b \quad[\text { Forming groups }] \\
& =(3 a)^{2}-(8 b)^{2}+3 a-8 b \quad[\text { Rewriting }] \\
& =(3 a-8 b)(3 a+8 b)+(3 a-8 b)\left[\begin{array}{l}
\text { Writing as difference } \\
\text { of squares }
\end{array}\right] \\
& =(3 a-8 b)(3 a+8 b+1) \quad[\text { Taking }(3 a-8 b) \text { common }]
\end{aligned}
\end{aligned}
$$

7. Sum of Difference of Two Cubes:
8. $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
9. $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$
