Geometric Progression

Important Terms

1. A sequence is an arrangement of numbers in a definite order according to some rule.
2. The various numbers occurring in a sequence are called its terms. We denote the terms of a sequence by $a_{1}, a_{2}, a_{3} \ldots$ etc. Here, the subscripts denote the positions of the terms. In general, the number at the nth place is called the nth term of the sequence and is denoted by a_{n}. The nth term is also called the general term of the sequence.
3. A sequence having a finite number of terms is called a finite sequence.
4. A sequence which do not have a last term and which extends indefinitely is known as an infinite sequence.

Geometric Progression

A sequence is said to be in geometric progression or G.P., if the ratio of any term to its preceding term is same throughout. Constant Ratio is common ratio denoted by ' r '.

General Term of a G.P.

The general term of a G.P. is given by

$$
t_{n}=a r^{n-1}
$$

where ' a ' is the first term and ' r ' is the common ratio.

Properties of G.P.

1. The ratio between the consecutive terms of a G.P. is always the same.
$\Rightarrow \frac{t_{2}}{t_{1}}=\frac{t_{3}}{t_{2}}=\frac{t_{4}}{t_{3}}=$
2. $r^{\text {th }}$ term from the beginning $\times r^{\text {th }}$ term from the end $=$ constant $=$ First term \times Last term
3. If a, b and c are in G.P,
$\Rightarrow \frac{\mathrm{b}}{\mathrm{a}}=\frac{\mathrm{a}}{\mathrm{c}} \Rightarrow \mathrm{b}^{2}=\mathrm{ac}$
4. In a G.P. if the terms at equal distances are taken, these terms are also in G.P.
5. If each term of a G.P. be multiplied or divided by the same non-zero number, the resulting series is also a G.P.
6. The series obtained by taking the reciprocals of the terms of a G.P. is also a G.P.
7. If each term of a G.P. is raised to the same non-zero number, the resulting series is also a G.P.
8. If the corresponding terms of two different G.P.s are multiplied/divided together, the resulting series, so obtained, is also a G.P.

Sum of \mathbf{n} terms of a G.P.

$$
S_{n}=a+a r+a r^{2}+\ldots+a r^{n-1}
$$

Case I: r=1
$\mathrm{S}_{\mathrm{n}}=\mathrm{a}+\mathrm{a}+\mathrm{a}+\ldots+$ to n terms $=\mathrm{na}$

Case Il: $\mathrm{r}<1$
$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$

Case III: $r>1$
$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$

Sum of Infinite terms of a G.P.

Sum of infinite terms in G.P. $=\frac{a}{1-r}$, if $|r|<1$

Geometric Mean Between Numbers a and b

If a and b are two positive numbers then a, G, b are in G.P.

$$
\begin{aligned}
& \Rightarrow G^{2}=a b \\
& \Rightarrow G=\sqrt{a b}
\end{aligned}
$$

Three or More Terms in G.P.

Number of terms is three: $\frac{a}{r}$, a, ar Number of terms is four: $\frac{a}{r^{3}}, \frac{a}{r}, a, a r^{3}$

Number of terms is five: $\frac{a}{r^{2}}, \frac{a}{r}, a, a r, a r^{2}$ and so on.

