Indices

Related terms

1. A Power is the product of a number by itself. It is represented with a base number and an exponent.

We know that $a^{3}=a \times a \times a$

$$
\mathrm{a}^{7}=\mathrm{a} \times \mathrm{a} \times \mathrm{a} \ldots \ldots 7 \text { times }
$$

Similarly, $\quad a^{m}=a \times a \times a \ldots \ldots m$ times In this example m is called index or exponent or power and a is called the base.
2. Index is a number which indicates how many times another number, the base, is being used as a repeated factor.

Laws of Indices

1. $\mathrm{a}^{\mathrm{m}} \times \mathrm{a}^{\mathrm{n}}=\mathrm{a}^{\mathrm{m}+\mathrm{n}}$ (Product Law)
2. $a^{m} \div a^{n}=a^{m}-n$ (Quotient Law)
3. $\left(a^{m}\right)^{n}=a^{m n}$ (Power Law)
4. $(a \times b)^{m}=a^{m} \times b^{m}$
5. $a-m=\frac{1}{a^{m}}$
6. If $a \neq 0$ and n is a positive integer, then $\sqrt[n]{a}=a^{\frac{1}{n}}$
7. If $a \neq 0$ and n is a positive integer, then $a^{\frac{m}{n}}=\sqrt[n]{a^{m}}, n \in N$
8. For any non-zero, $a, a^{n}=\frac{1}{a^{-n}}$ and $a^{-n}=\frac{1}{a^{n}}$
9. For any non-zero number raised to the power zero is always equal to unity, That is, $a^{0}=1$
10. $(-a)^{m}=a^{m}$; if m is an even number
11. $(-a)^{m}=-a^{m}$; if m is an odd number
