Measures of Central Tendency - Mean

The numerical expressions which represent the characteristics of a group are called Measures of Central Tendency.

Three measures of central tendency are:
i. Mean
ii. Median
iii. Mode

Arithmetic Mean

The arithmetic mean "is the sum of all observations in the data divided by the number of observations."
Arithmetic Mean of n numbers $x_{1}, x_{2}, x_{3}, \ldots \ldots, x_{n}=\frac{x_{1}+x_{2}+x_{3}+\ldots \ldots+x_{n}}{n}=\frac{\sum x}{n}$
The greek letter Σ (called sigma) represents the sum of numbers.
Arithmetic mean may be computed by anyone of the following methods:
i. Direct method
ii. Short-cut method
iii. Step-deviation method

Direct method

If a variable X takes values $x_{1}, x_{2}, x_{3} \ldots ., x_{n}$ with corresponding frequencies $f_{1}, f_{2}, f_{3}, \ldots f_{n}$ respectively, then arithmetic mean of these values is given by,

Mean $=\frac{\sum \mathrm{fx}}{\sum \mathrm{f}}$

Short-cut method

This method is used to overcome the difficulty faced in calculations where big quantities are involved.
Let $x_{1}, x_{2}, \ldots \ldots, x_{n}$ be value at a variable x with corresponding frequencies $f_{1}, f_{2}, \ldots \ldots, f_{n}$ respectively.
Taking derivative about an arbitrary point ' A ', we have
Mean $=A+\frac{\sum \mathrm{fd}}{\sum f}$, where $A=$ Assumed mean and $d=x-A$

Step-deviation method

Sometimes during the application of the short-cut method for finding arithmetic mean of derivative d is divisible by common number i (say). In such cases arithmetic is reduced to a great extent by taking $u_{i}=$ $t=\frac{d}{i}=\frac{x-A}{i}$, then
Mean $=A+\frac{\sum \mathrm{ft}}{\sum \mathrm{f}} \times \mathrm{i}$

