Metallurgy

Metals and Non-metals

Position and characteristics of metals in the periodic table

Group		p	Alkali metals & Alkaline Earth metals – Elements on the extreme left	
1	1 2 Property		Reason	
Li	Be	Light -metals	Large atomic size and so low density.	
Na K Rb	Mg Ca Sr	 Soft –metals Low–melting points 	 Possess 1 or 2 valence electrons which cannot bind atoms firmly so energy binding the atoms is low. 	
Cs Fr	Ba Ra	 Highly –reactive Strongly-electropositive Strong –reducing agents 	 Large atomic size, 1 or 2 valence electrons can be easily removed i.e. have low ionization potential. 	

Group		Alkali metals & Alkaline Earth metals – Elements on the extreme left	
3 to 12	Property	Reason	
Fe Zn	•Heavy - hard metals High - melting points	 Small atomic size, so high density and energy binding the atoms is high. 	
	 Electropositive nature between -strong and weak 	 Elements are between strongly electropositive group 1 and weakly electropositive group 13. I.P increases across the period. 	

Group		Alkali metals & Alkaline Earth metals – Elements on the extreme left
13 to 16	Property	Reason
AI	• Weakly - electropositive	 Smaller atomic size, higher I.P, less tendency to lose 3 valence electrons

Characteristics of Alkali Metals and Alkaline Earth Metals

	Alkali metals	Alkaline earth metals
Position	Group I [IA]	Group II [IIA]
Properties	-	
Density	 Low density 	 Higher density
 Melting point 	 Low melting point 	 Higher melting point
 Boiling point 	 Low boiling point 	 Higher boiling point
 Flame test 	Characteristic colour	 Mg and Be do not give
Electropositive character	 Strongly electropositive 	characteristic colour
Reactivity	character	 Less electropositive
	 Highly reactive 	nature
		 Less reactive
Action of air	$M + O_2 \rightarrow M_2O \rightarrow MOH$	 Tarnish slowly and form
		a layer of oxide when
		exposed to moist air
		$M + 2H_2O \rightarrow M(OH)_2 + H_2$
Action of water	$2M + 2H_2O \rightarrow 2MOH + H_2$	$M + H_2SO_4 \rightarrow MSO_4 + H_2$
Action of acids	$M + 2HCI \rightarrow MCI_2 + H_2$	

Comparison of Metals and Non-metals

• Physical Properties of Metals and Non-metals

Metals	Non-metals
 Metals are generally hard solids and	 Non-metals are generally soft
vaporise only at high temperature.	and usually gases or liquids.
 Metals have a lustre called metallic lustre and can be polished. 	 Non-metals lack lustre.
 Their melting and boiling points are	 Non-metals usually have low
high (except alkali metals and Hg).	melting and boiling points.
 Metals have high density except alkali	 Non-metals generally have low
metals such as Na, K etc.	density.
 Metals are generally malleable and	 Non-metals are non-malleable
ductile and have high tensile strength.	and non-ductile.
 Metals form alloys and amalgams. Bronze is an alloy of Copper, Tin and Zinc. Sodium amalgam is an alloy of Mercury and Sodium. 	 Non-metals do not form alloys.
 Metals are hard but not brittle. 	 Non-metals are brittle in nature.
 Metals are generally good conductors	 Non-metals are bad conductors
of heat and electricity.	of heat and electricity.
 Metals do not generally dissolve in liquids except by a chemical reaction. 	• They are generally soluble in water or other solvents and do not react with them chemically, i.e. no chemical reaction occurs.

• Chemical properties of metals and non-metals

Metals	Non-metals
Electronic configurations of metals have 1, 2 or 3 valence electrons.	• Electronic configurations of non- metals have 4, 5, 6 or 7 valence electrons.
• Metals are electropositive in nature. They readily lose electrons and form positively charged ions called cations.	 Non-metals are electronegative in nature. They readily gain electrons and form negatively charged ions called anions
Because metals lose electrons during a chemical reaction, they are good reducing agents.	 Non-metals possess a property to gain electrons; hence, they are good oxidising agents.
• Oxides of metals may be basic in nature and dissolve in water to form an alkaline solution.	 Non-metals generally form acidic oxides and dissolve in water to form an acidic solution.
• Metals do not usually react with H ₂ . Metals placed above hydrogen in the activity series react with dilute HCI and dilute H ₂ SO ₄ to liberate H ₂ gas. M + 2HCI \longrightarrow MCl ₂ + H ₂ (dil.) M + H ₂ SO ₄ \longrightarrow MSO ₄ + H ₂ (dil.)	 Non-metals do not react with dilute acids to liberate hydrogen.
Metals react readily with Cl ₂ to form chlorides.	 Non-metals usually form chlorides, which are volatile covalent liquids or gases.
 Metals form electrovalent or ionic compounds. Metallic salts conduct electricity in the fused state or in solution because of the free electrons or ions. Examples: NaCl, CaCl₂, MgCl₂. When electric current is passed through molten calcium chloride, calcium metal is liberated at the cathode and chlorine at the anode. CaCl₂ → Ca²⁺ + 2Cl⁻ (molten) 	Non-metals form covalent compounds which do not conduct electricity because there are no free electrons or ions to carry the current.
At cathode: $Ca^{2^+} + 2e^- \longrightarrow Ca$ At anode: $Cl^ e^- \longrightarrow Cl$ $Cl + Cl \longrightarrow Cl_a$	

Activity Series of Metals

Metals differ in tendency to lose electrons and hence can be arranged in a series according to their tendency to give up valence electrons.

Activity Series

It is a series of metals arranged according to their decreasing reactivity. The metals at the top of the series are

- Most easily oxidised
- Most electropositive
- Capable of displacing the metal below from its salt solution

Reactions of Metals

Metals	Reaction with acid
ĸ	Reacts explosively with dilute acid liberating hydrogen. 2Na + 2HCl \rightarrow 2NaCl + H ₂
Na _	Electron activities and the lectron
Ca	Calcium reacts less vigorously
	$Ca + 2HCI \rightarrow CaCl_2 + H_2$
Mg	Reacts with dilute acids less vigorously, liberating hydrogen.
	Mg + 2HCl \rightarrow MgCl ₂ + H ₂
AI	Due to great affinity towards oxygen, a coating of oxide is formed which does not allow any further reaction with acid.
7	$Zn + 2HCI \rightarrow ZnCl_2 + H_2$
En	$Fe + 2HCI \rightarrow FeCI_2 + H_2$
Ph	Lead reacts with conc. HCl to liberate hydrogen.
гр	$Pb + 2HCI \rightarrow PbCl_2 + H_2$
THI	
Cu ¬	
Hq	Do not produce hydrogen on reaction with dilute or conc.
Ag	acids.
Pt	
Au _	

Characteristics of Metallic Compounds

	Oxides	Hydroxides	Carbonates	Nitrates
	K, Na	K, Na	K, Na	K, Na
K	Stable to heat	Stable to heat	Stable to heat	Decomposes to
Na	Soluble in water	Soluble in	Soluble in	give nitrite and
		water	water	oxygen
				2KNO ₃
				\rightarrow 2KNO ₂ + O ₂
Ca	Ca to Cu	Ca to Cu	Ca to Cu	Ca to Cu
Mg	Stable to heat	Decomposes to	Decomposes to	Decomposes to
AI		give metal	give metal	give metal
Zn		oxide and	oxide and CO ₂	oxide and NO ₂
Fe		water	CaCO ₃ →CaO	
Sn		Ca(OH) ₂	$+ CO_2$	2Ca(NO ₃) ₂
Pb		\rightarrow CaO + H ₂ O		\rightarrow 2CaO +
[H]				$4NO_2 + O_2$
Cu				
Hg	Hg to Au	Hg to Au	Hg to Au	Hg to Au
Ag	Decomposes to give	Hydroxides do	Decomposes to	Decomposes to
Pt	metal and oxygen	not exist or are	give metal, CO ₂	give metal, NO ₂
Au	$2Hg \rightarrow 2Hg + O_2$	rarely formed	and O ₂	and O ₂
		Insoluble in	Insoluble in	$2AgNO_3 \rightarrow 2Ag$
		water	water	+ 2NO ₂ + O ₂

Corrosion

When the surface of a metal is exposed to air, moisture or any other substance around it, the metal is said to corrode, and the phenomenon is known as corrosion.

Corrosion of Iron

Corrosion of iron is known as rusting. Rusting is the slow oxidation of iron by atmospheric oxygen in the presence of water. $4Fe + 3O_2 + 2xH_2O \rightarrow 2Fe_2O_3.xH_2O$

Conditions Necessary for Rusting
 Presence of water (or moisture)
 Presence of air (or oxygen)

• Prevention of Corrosion

Barrier protection: The process in which the metal surface is not allowed to come in contact with atmospheric agents such as air or water is known as barrier protection.

For example, the metal (iron) is coated with another metal by using electricity in the process called electroplating.

Sacrificial protection: The metal to be protected is covered with a more electropositive metal such as zinc or magnesium. For example, iron is coated with zinc in the process called galvanisation.

Extraction of Metals Based on the Activity Series

Common terms used in extraction

- **Metallurgy:** The process used for the extraction of metals in their pure form from their ores is called metallurgy.
- **Minerals:** The naturally occurring compounds of metals which are generally mixed with other matter such as soil, sand, limestone and rocks are known as minerals.
- **Gangue:** Earthy impurities, including silica and mud, associated with the ore is called gangue.
- **Ores:** Those minerals from which metals are extracted commercially at a comparatively low cost and with minimum effort are called ores.
- Flux: A flux is a substance which is added to the charge in a furnace to remove the gangue.
- Slag: It is the fusible product formed when flux reacts with impurities during the extraction of metals.
- **Smelting:** It is the process of reducing the roasted oxide ore and removing the gangue with the help of an appropriate flux added with the ore.

Steps Involved in Extraction

Crushing and Grinding

Ores are crushed into a fine powder in big jaw crushers and ball mills. This process is called pulverisation.

Concentration of Ores Gravity separation *Principle*: Separation of

ORE - Denser ore particles settle in grooves on a vibrating sloped table.

GANGUE - Lighter gangue particles washed down by water.

Process: The ore is poured over a vibrating sloped table with grooves, and a jet of water is allowed to flow over it. The dense ore particles settle down in the grooves.

Magnetic separation

Principle: Separation of

Process: The pulverised ore is placed on a conveyor belt. The magnetic particles are attracted to the magnetic wheel and fall away separately from the non-magnetic particles.

Froth flotation Principle: Separation of

ORE - Preferentially wetted by the oil and hence floats on top as foam.

GANGUE - Preferentially wetted by the water and settles down.

Process: This method is generally applied for sulphide ores. The ore is taken in a large tank containing oil and water and is agitated with a current of compressed air. The ore is wetted by the oil and separates from the gangue in the form of froth.

Roasting and Calcination (If the ore is not an oxide)

A] Roasting

The process of heating the concentrated ore to a high temperature in the presence of excess air.

 $2ZnS + 3O_2 \rightarrow 2ZnO + 2SO_2$

B] Calcination

The process of heating the concentrated ore in the absence of air at a temperature not sufficient to melt the ore.

 $ZnCO_3 \rightarrow ZnO + CO_2$

Reduction in Metallic Oxides

Reduction by electrolysis

Reduction in highly electropositive metals such as K, Na, Ca, Mg and Al oxides/halides. Electrolysis of fused metallic salts

Al₂O₃ \longrightarrow 2Al⁺³ + 3O²⁻ **Cathode**: 2Al⁺³ + 6e⁻ \rightarrow 2Al **Anode**: 3O²⁻ - 6e⁻ \rightarrow 3[O] \rightarrow 3O₂ Product at cathode: Pure aluminium metal Product at anode: Oxygen gas

Reduction by reducing agents

 $\begin{array}{ll} \text{ZnO + C} & \rightarrow \text{Zn + CO} \\ \text{2PbO + C} & \rightarrow \text{2Pb + CO}_2 \end{array}$

Refining of Impure Metal

- 1. Distillation: For refining volatile metals. Examples: Zinc, mercury
- 2. Liquation: For refining low-melting-point metals. Examples: Lead, tin
- 3. Oxidation: For refining metals by oxidation of their impurities. Example: Iron
- 4. Electrolytic refining: For refining impure metals by electrolysis. Examples: Cu, Al, Pb

Common Ores of Aluminium, Iron and Zinc

Ore of Al	Chemical name	Formula
Bauxite	Hydrated aluminium oxide	$AI_2O_3.2H_2O$
Cryolite	Sodium aluminium fluoride	Na3AlF ₆
Corundum	Anhydrous aluminium oxide	Al ₂ O ₃

Ore of Fe	Chemical name	Formula
Red haematite	Anhydrous ferric oxide	Fe ₂ O ₃
Brown haematite	Hydrated ferric oxide	2Fe ₂ O _{3.} 3H ₂ O
Magnetite	Triferric tetraoxide	Fe ₃ O ₄
Iron pyrites	Iron disulphide	FeS ₂
Siderite	Ferrous carbonate	FeCO ₃

Ore of Zn	Chemical name	Formula
Zinc blende	Zinc sulphide	ZnS
Zincite	Zinc oxide	ZnO
Calamite	Zinc carbonate	ZnCO ₃

Extraction of Aluminium

Process for Extraction of Aluminium from Bauxite

1. Concentration of Ore - Bayer process

i. Conversion of impure bauxite to sodium aluminate

Al2O3.2H2O + 2NaOH 150-200°C > 2NaAlO2 + 3H2O

ii. Conversion of sodium aluminate to aluminium hydroxide

NaAlO2 + 2H2O 50-60°C NaOH + AI(OH)3

iii. Conversion of Al(OH)₃ to pure alumina

2AI(OH)3 1100°C AI2O3 + 3H2O

2. Electrolytic Reduction in Metallic oxide – Hall Heroult process

Electrolyte: Mixture of molten alumina 20%, cryolite 60% and fluorspar 20%. **Electrolytic cell**: Rectangular steel tank with carbon lining. **Electrodes**: Cathode: Carbon lining (gas carbon)

Anode: Thick carbon (graphite) **Temperature**: 950°C **Current**: 100 amperes at 6–7 volts **Electrolytic reaction:**

Cryolite: Na₃AlF₆ $3Na^{1+} + Al^{3+} + 6F^{1-}$ Fluorspar: CaF₂ $Ca^{2+} + 2F^{1-}$ Alumina: Al₂O₃ $2Al^{3+} + 3O^{2-}$ Cathode: 2Al³⁺ + 6e⁻ \rightarrow 2Al Anode: 3O²⁻ - 6e⁻ \rightarrow 3[O] \rightarrow 3O₂ Products formed: At cathode: Pure aluminium metal At anode: Oxygen gas

Refining of Aluminium (Hoope's electrolytic process) Tank contains three immiscible layers

Upper layer: Pure molten AI with carbon electrodes serves as cathode. **Middle layer:** Mixture of cryolite, BaF₂, AIF and CaF₂ serves as the electrolyte. **Lower layer:** Impure AI at the bottom along with carbon lining acts as the anode.

Electrolytic reaction:

Cathode: $AI^{3+} + 3e^{-} \rightarrow AI$ Anode: $AI - 3e^{-} \rightarrow AI^{3+}$

Collection: Pure AI [about 99.9% pure] is withdrawn from the tapping hole.

Properties of Aluminium

Physical properties

Nature: Silvery light metal, malleable and ductile Conductivity: Good conductor of heat and electricity Boiling point: 2050°C Melting point: 660°C

Chemical Properties

• Action with Air

 $\begin{array}{l} 4\text{AI}+3\text{O}_2\rightarrow2\text{AI}_2\text{O}_3\\ 2\text{AI}+\text{N}_2\rightarrow2\text{AIN} \end{array}$

- Action with Water 2 Al + $3H_2O$ (steam) $\rightarrow Al_2O_3 + 3H_2$
- Action with Non-metals 2AI + $3CI_2 \rightarrow 2AICI_3$ 2AI + $3S \rightarrow AI_2S$
- Action with Alkalis
 2AI + 2NaOH + 2H₂O → 2NaAlO₂ + 3H₂

Action with Acids

 $\begin{array}{l} 2{\sf AI}+6{\sf HCI}\rightarrow 2{\sf AlCI}_3+3{\sf H}_2\\ 2{\sf AI}+3{\sf H}_2{\sf SO}_4\ ({\sf dil.})\rightarrow {\sf Al}_2\ ({\sf SO}_4)_3+3{\sf H}_2\\ 2{\sf AI}+3{\sf H}_2{\sf SO}_4\ ({\sf conc.})\rightarrow {\sf Al}_2\ ({\sf SO}_4)_3+6{\sf H}_2{\sf O}+3{\sf SO}_2\\ \\ {\sf Nitric\ acid\ is\ rendered\ passive\ due\ to\ the\ formation\ of\ a\ thin\ aluminium\ oxide\ layer.} \end{array}$

Reducing Action

Reduces heated metallic oxides of Fe, Cr and Mn to metals. Fe₂O₃ + 2AI \rightarrow Al₂O₃ + 2Fe

Uses of Metals and Alloys

Uses of Aluminium

- i. Being a strong, light and corrosion-resistant metal, it is used in alloys.
- ii. Being a good conductor of electricity, it is used in the manufacture of cables for power transmission.
- iii. Ships are made of alloys of aluminium because it is unaffected by sea water.

Uses of iron

- i. Cast iron is used in drain pipes, gutter covers, weights and railings.
- ii. Wrought iron is used in chains, horse shoes and electromagnets.
- iii. Steel is used in the construction of buildings, overhead structures, machines and in various alloys.

Uses of Zinc

- i. Mostly used for coating iron and steel sheets to prevent them from rusting.
- ii. For making useful alloys such as brass, bronze and German silver.
- iii. Zinc dust is used as a reducing agent for many organic reactions.
- iv. Zinc compounds are used in paints, electroplast, preservatives for leather and a mordant for the dyeing of textiles.

Alloys

An alloy is a homogeneous mixture of two or more metals or of one or more metals with certain non-metallic elements.

• Reasons for Alloying

- i. To modify appearance and colour
- ii. To modify chemical reactivity
- iii. To modify casting ability
- iv. To lower the melting point
- v. To increase hardness and tensile strength
- vi. To increase resistance to electricity

Some Important Alloys and their Uses

Name	Composition	Uses
Brass	Cu = 60–80% Zn = 40–20%	For making utensils, cartridges
Bronze	Zn = 2%, Cu = 80% Sn = 18%	For making utensils, statues and coins
Duralumin	AI = 95%, Cu = 4% Mn = 0⋅5%, Mg = 0⋅5%	For making bodies of aircrafts
Magnalium	AI = 95%, Mg = 5%	For making balance beams and light instruments
Solder	Pb = 50–40%, Sn = 50–60%	For soldering purposes
Stainless Steel	Fe = 73%, Cr = 18% C = 1%, Ni = 8%	For making cutlery, utensils
Type metal	Pb = 75%, Sn = 10%, Sb = 15%	For printing blocks
Manganese steel	Fe = 84%, Mn = 15%, C = 0·9–1·5%	For making safes, armour plates, rock drills
Tungsten steel	Fe = $77-89.5\%$, W = $10-20\%$, C = $0.9-1.5\%$	For making cutting tools and high-speed lathes
Alnico	Fe = 50%, AI = 20%, Ni = 20%,Co = 10%	For making powerful magnets
Gun metal	Cu = 88%, Sn = 10%, Zn = 1%, Pb = 1%	For making barrels of cannons, gears and bearings
German silver	Cu = 60–30%, Zn = 25–35%, Ni = 15–35%	For making rheostats, resistors and electric heaters
Bell metal	Cu = 80%, Sn = 20%	For making bells and gongs