Quadratic Equations

Important Concepts

1. If $p(x)$ is a quadratic polynomial, then $p(x)=0$ is called a quadratic equation.

The general form of a quadratic equation, in the variable x, is $a x^{2}+b x+c=0$, where a, b, c are real numbers and $\mathrm{a} \neq 0$.
2. The value of x that satisfies an equation is called the zeroes or roots of the equation. A real number α is said to be a solution/root of the quadratic equation $a x^{2}+b x+c=0$ if $a \alpha^{2}+b \alpha+c=0$.
3. A quadratic equation has at most two zeros.

Nature of the roots of a quadratic equation:

The nature of the roots of a quadratic equation depends upon the value of discriminant $b^{2}-4 a c$.
i. If $\boldsymbol{b}^{\mathbf{2}} \mathbf{- 4 a c}>\mathbf{0}$, the roots are real and unequal
ii. If $\boldsymbol{b}^{2}-\mathbf{4 a c}=\mathbf{0}$, the roots are real and equal
iii. If $\mathbf{b}^{\mathbf{2}}-\mathbf{4 a c}<\mathbf{0}$, the roots are imaginary (not real)

If $a x^{2}+b x+c, a \neq 0$, can be reduced to the product of two linear factors, then the roots of the quadratic equation $a x^{2}+b x+c=0$ can be found by equating each factor to zero.

Solution of Quadratic Equation by Factroisation:

Example,
Solve the equation $\frac{9}{2} x=5+x^{2}$ by factorization:
Step 1: Clear all fractions and brackets, if necessary

$$
9 x=2\left(5+x^{2}\right)
$$

Step 2: Transpose all the terms to the left hand side to get an equation in the form $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$
$9 x=2 x^{2}+10$
$\Rightarrow 2 \mathrm{x}^{2}-9 \mathrm{x}+10=0$
Step 3: Factorise the expression on the left hand side.

$$
\begin{aligned}
& 2 x^{2}-9 x+10=0 \\
& \Rightarrow 2 x^{2}-5 x-4 x+10=0 \\
& \Rightarrow x(2 x-5)-2(2 x-5)=0 \\
& \Rightarrow(x-2)(2 x-5)=0
\end{aligned}
$$

Step 4: Put each factor equal to zero and solve

$$
\begin{array}{lc}
(x-2)(2 x-5)=0 \\
\Rightarrow x-2=0 & 2 x-5=0 \\
\Rightarrow x=2 ; & 2 x=5 \\
\Rightarrow x=2 ; & x=\frac{5}{2}
\end{array}
$$

Thus, we have, $x=2$ or $x=\frac{5}{2}$

Solution of Quadratic Equation by Quadratic Formula:

The roots of a quadratic equation $a x^{2}+b x+c=0(a \neq 0)$ can be calculated by using quadratic formula:

$$
\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \text { and } \frac{-b-\sqrt{b^{2}-4 a c}}{2 a}, \text { where } b^{2}-4 a c \geq 0
$$

Equations Reducible to Quadratic Form

There are many equations which are not in the quadratic form but can be reduced to quadratic form by simplifications.

Let us solve the equation $x^{4}-2 x^{2}-3=0$
It is clear that the above equation is not a quadratic equation.
Now assume that $x^{2}=y$
Then rewrite the given quadratic equation as, $\left(x^{2}\right)^{2}-2\left(x^{2}\right)-3=0$
Substituting $x^{2}=y$ in the above equation, we have $y^{2}-2 y-3=0$
This is a quadratic equation in y.
Let us solve the quadratic equation through factorization.
$y^{2}-2 y-3=0$
$\Rightarrow \mathrm{y}^{2}-3 \mathrm{y}+\mathrm{y}-3=0$
$\Rightarrow \mathrm{y}(\mathrm{y}-3)+(\mathrm{y}-3)=0$
$\Rightarrow(y+1)(y-3)=0$
$\Rightarrow \mathrm{y}+1=0$ or $\mathrm{y}-3=0$
$\Rightarrow \mathrm{y}=-1$ or $\mathrm{y}=3$

Applications of quadratic equation in solving real life problems

Following points can be helpful in solving word problems:
i. Every two digit number ' $x y$ ' where x is a ten's place and y is a unit's place can be expressed as $x y=10 x+y$
ii. Downstream: It means that the boat is running in the direction of the stream Upstream: It means that the boat is running in the opposite direction of the stream Thus, if

Speed of boat in still water is $x \mathrm{~km} / \mathrm{h}$
And the speed of stream is $y \mathrm{~km} / \mathrm{h}$
Then the speed of boat downstream will be $(x+y) k m / h$ and in upstream it will be $(x-y) k m / h$.
iii. If a person takes x days to finish a work, then his one day's work $=\frac{1}{x}$

