Ratio and Proportion

Important Concepts-Ratio

1. The ratio between x and y is the fraction $\frac{x}{y}$ and written as $x: y$, where, $y \neq 0$

Here, the first quantity x is known as Antecedent and second quantity y is known as Consequent.
2. The ratio $\frac{x}{y}$ has no unit.
3. Ratio is taken only between positive quantities.
4. Ratio exists only between two quantities of the same kind.
5. The value of a ratio remains unchanged, if both the antecedent $\left(N^{r}\right)$ and the consequent $\left(D^{r}\right)$ are multiplied or divided by the same quantity.
6. The ratio is in its lowest terms if the H.C.F of its both the terms is unity, 1 .
7. Ratio $a: b$ is not equal to $b: a$, unless $a=b$
8. If a quantity increases or decreases in the ratio $a: b$, the new resulting quantity is equal to $\frac{b}{a}$ times of the original quantity.
9. Compounded Ratio is the ratio obtained by multiplying two or more ratios together Let $\mathrm{a}: \mathrm{b}$ and $\mathrm{x}: \mathrm{y}$ be the two ratios then their compounded ratio be
$\frac{a}{b} \times \frac{x}{y}=\frac{a x}{b y}$ i.e., $a x: b y$.
Compounded ratio of $a: b, c: d$ and $e: f$ is ace:bdf
10. Duplicate ratio is the compound ratio of two equal ratios.

Duplicate ratio of $\mathrm{x}: \mathrm{y}$ is $\mathrm{x}^{2}: \mathrm{y}^{2}$.
11. Triplicate ratio is the compound ratio of three equal ratios.

Triplicate ratio of $x: y$ is $x^{3}: y^{3}$.
12. Sub-duplicate ratio of $x: y$ is $\sqrt{x}: \sqrt{y}$.

The sub-triplicate ratio of $x: y$ is $x^{1 / 3}: y^{1 / 3}$.
13. The reciprocal ratio is the ratio between the reciprocals of two quantities.

The reciprocal ratio of $x: y$ is $\frac{1}{x}: \frac{1}{y}$ i.e., $y: x$.

Important Concepts-Proportion

1. $a: b:: c: d \Leftrightarrow \frac{a}{b}=\frac{c}{d}$.

This is called cross product rule.
If four quantities a, b, c and d are such that the ratio $a: b$ is equal to the ratio $c: d$ then we say a, b, c and d are in proportion. We express it by writing $a: b:: c: d$.Here, a and d are called extreme terms while b and c are called the middle terms. Here, d is called the fourth proportional.
2. Three numbers a, b and c are said to be in continued proportion if $a: b:: b: c$ that is $\frac{a}{b}=\frac{b}{c} \Rightarrow b^{2}=a c$.
3. If a, b and c are in continued proportion then b is called the mean proportional or geometric mean of a and c. Thus, $\frac{\mathrm{a}}{\mathrm{b}}=\frac{\mathrm{b}}{\mathrm{c}} \Rightarrow \mathrm{b}^{2}=\mathrm{ac} \Rightarrow \mathrm{b}=\sqrt{\mathrm{ac}}$.
4. If a, b, c, d, e, f, \ldots are in continued proportion if and only if, $\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}=\frac{e}{f}=\ldots$
5. If a, b and c are in continued proportion, then ' a ' is called the first proportional.
6. If a, b and c are in continued proportion, then ' c ' is called the third proportional.

Some properties of Ratio and Proportion

1. Invertendo: If $a: b: c: d$ then $b: a:: d: c$, that is $\frac{a}{b}=\frac{c}{d} \Rightarrow \frac{b}{a}=\frac{d}{c}$
2. Alternendo: If $a: b: c: d$ then $a: c:: b: d$, that is $\frac{a}{b}=\frac{c}{d} \Rightarrow \frac{a}{c}=\frac{b}{d}$
3. Componendo: If $a: b: c: d$ then $(a+b): b::(c+d): d$, that is $\frac{a}{b}=\frac{c}{d} \Rightarrow \frac{a+b}{b}=\frac{c+d}{d}$
4. Dividendo: If $a: b: c: d$ then $(a-b): b::(c-d): d$, that is $\frac{a}{b}=\frac{c}{d} \Rightarrow \frac{a-b}{b}=\frac{c-d}{d}$
5. Componendo and Dividendo: If $a: b: c: d$ then $(a+b):(a-b)::(c+d):(c-d):$, that is $\frac{a}{b}=\frac{c}{d} \Rightarrow \frac{a+b}{a-b}=\frac{c+d}{c-d}$
6. Convertendo: If $a: b: c: d$ then $a:(a-b):: c:(c-d)$, that is $\frac{a}{b}=\frac{c}{d} \Rightarrow \frac{a}{a-b}=\frac{c}{c-d}$
7. For any two or more equal ratios, each ratio is equal to the ratio between sum of their antecedents and sum of their consequents.
Therefore, we have,
(i) $\frac{a}{b}=\frac{c}{d} \Rightarrow \frac{a+c}{b+d}$
(ii) $\frac{a}{b}=\frac{c}{d}=\frac{e}{f} \Rightarrow \frac{a+c+e}{b+d+f}$
