## Section and Mid-Point Formula

## Co-ordinate geometry is that branch of mathematics which creates geometry algebraically.

## The Section Formula

Section formula is used to find the co-ordinates of a point which divides the line segment joining two given points in a given ratio.

If point $P$ divides the line segment joining the points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$, then the coordinates of point $P$ are given by $\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}\right)$

## Mid-Point Formula

Mid-Point formula is used to find the co-ordinates of the mid-point of the line segment joining two given points.
Let $P(x, y)$ be a point lying on a line segment $A B$, where the coordinates of $A$ and $B$ are $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ respectively. Suppose $P$ divides $A B$ in the ratio $1: 1$. In other words, $P$ is the mid-point of $A B$.
$\Rightarrow \mathrm{AP}=\mathrm{PB}$
Then coordinates of $P$ are given by $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

## Centroid of a Triangle

The straight line joining the vertex of a triangle to the mid-point of the opposite side is called a median of the triangle.

The point which divides a median of a triangle in the ratio $2: 1$ is called the centroid of the triangle.
Thus, if $A D$ is a median of $\triangle A B C$ and $G$ is its centroid, then $\frac{A G}{G D}=\frac{2}{1}$
Let the vertices of $\triangle \mathrm{ABC}$ are $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$.
Then the coordinate of centroid are given by $\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$

