Study of Compounds – Sulphuric Acid

0

Ť

HO - S - HO

t.

Ō

Sulphuric Acid

Molecular formula: H₂SO₄ Relative molecular mass: 98 Structure:

General Methods of Preparation

- By the action of heat on nitric acid and sulphur. $S + 6HNO_3 \rightarrow 6NO_2 + 2H_2O + H_2SO_4$
- By passing chlorine through an aqueous solution of sulphur trioxide. $Cl_2 + SO_2 + 2H_2O \rightarrow 2HCI + H_2SO_4$
- By dissolution of sulphur trioxide in water. $SO_3 + H_2O \rightarrow H_2SO_4$
- By hydrolysis of sulphuryl chloride. $SO_2Cl_2 + 2H_2O \rightarrow H_2SO_4 + 2HCI$

Manufacture of Sulphuric Acid [Contact Process]

Steps involved in the contact process

(1) Production of sulphur dioxide

 SO_2 is produced by roasting metallic sulphides in air. 4FeS₂ +11O₂ \rightarrow 2Fe₂O₃ + 8SO₂

(2) Purification of gases

To enhance the efficiency of a catalyst, various impurities present in the mixture of sulphur dioxide and air are first removed.

(3) Catalytic oxidation of sulphur dioxide

Oxidation of SO_2 to SO_3 at 450°C in the presence of catalyst vanadium pentaoxide.

$$2SO_2 + O_2 \xrightarrow{V_2O_5} 2SO_3 = 450^{\circ}C$$

(4) Absorption of sulphur trioxide in sulphuric acid

Sulphur trioxide vapours are absorbed by a stream of conc. sulphuric acid. $SO_3 + H_2SO_4 \rightarrow H_2S_2O_7$ (oleum or pyrosulphuric acid)

(5) Dilution of oleum to obtain sulphuric acid

A calculated amount of water is added to obtain sulphuric acid of desired strength. $H_2S_2O_7$ + $H2O \to 2H_2SO_4$

Properties of Sulphuric Acid

(A) Physical Properties

- Colourless, odourless with slight sour taste.
- It is highly corrosive in nature and chars the skin black.
- It is heavier than water and soluble in water.
- Boiling point is 338°C, and melting point is 10.4°C.

(B) Chemical Properties

Properties of Dilute Sulphuric Acid

- Dilute sulphuric acid reacts with metals to form metallic sulphate and hydrogen. Mg + H₂SO₄ \rightarrow MgSO₄ + H₂ Fe + H₂SO₄ \rightarrow Fe₂SO₄ + H₂
- It neutralises bases to form salts and water. NaOH + $H_2SO_4 \rightarrow NaHSO_4 + H_2O$
- It liberates carbon dioxide from metallic carbonates and bicarbonates. Na₂CO₃ + H₂SO₄ → Na₂SO₄ + H₂O + CO₂ 2KHCO₃ + H₂SO₄ → K₂SO₄ + 2H₂O +2CO₂
- It evolves hydrogen sulphide from metal sulphides.
 Na₂S + H₂SO₄ → Na₂SO₄ + H₂S
 ZnS + H₂SO₄ → ZnSO₄ + H₂S
- It evolves sulphur dioxide from sulphites and hydrogen sulphites. Na₂SO₃+H₂SO₄ → Na₂SO₄ + H₂O + SO₂ 2NaHSO₃+H₂SO₄ → Na₂SO₄ + 2H₂O + 2SO₂

Properties of Conc. Sulphuric Acid

Non-volatile nature

It has a high boiling point so it is used to prepare volatile acids such as HCl, HNO_3 and acetic acid from their salts.

NaCl + $H_2SO_4 \rightarrow NaHSO_4 + HCl$

 $NaNO_3 + H_2SO_4 \rightarrow NaHSO_4 + HNO_3$

• As an oxidising agent $C + 2H_2SO_4 \rightarrow CO_2 + 2H_2O + 2SO_2$ $Cu + 2H_2SO_4 \rightarrow CuSO_4 + 2H_2O + SO_2$ $2HBr + H_2SO_4 \rightarrow Br_2 + 2H_2O + SO_2$

• As a dehydrating agent

 $\begin{array}{l} H_2SO_4 \text{ has a great affinity for water, and therefore, it acts as a dehydrating agent.} \\ C_2H_5OH \xrightarrow[Conc. H_2SO_4]{} C_2H_4 + H_2O \\ C_6H_{12}O_6 \xrightarrow[Conc. H_2SO_4]{} 6C + 6H_2O \end{array}$

Uses of Sulphuric Acid

- In the preparation of halogens, CO, CO₂ and SO₂.
- Extraction of metals: Leaching of metallic compounds produces sulphates which give the metal in pure form on electrolysis.
- Pickling of metals: Removes metallic impurities from the surface of metals before galvanising.
- Industrial uses:
 - i. In the manufacture of fertilisers such as ammonium sulphate [(NH₄)₂SO₄] and superphosphate of lime [Ca (H₂PO₄)₂ +CaSO₄].
 - ii. In the manufacture of explosives such as trinitrotoluene and picric acid.