Surface Area and Volume of 3-D Solids

Introduction

1. Anything which occupies space and has a definite shape is called a solid.
2. Surface area of a solid is the sum of the areas of all its faces.
3. The space occupied by a solid object is the volume of that object.

Cuboid

A rectangular solid which has six faces, each of which is a rectangle, is called a cuboid.
If I, b, h denote respectively the length, breadth and height of a cuboid, then
Lateral surface area or Area of four walls $=2(l+b) \times h$

Total surface area $=2(\mathrm{lb}+\mathrm{bh}+\mathrm{hl})$

Volume $=I \times b \times h$
Length of diagonal $=\sqrt{l^{2}+b^{2}+h^{2}}$

Cube

A rectangular solid in which each face is a square, is called a cube
If the length of each edge of a cube is 'a' units, then

Lateral surface area $=4 \mathrm{a}^{2}$

Total surface area $=6 \mathrm{a}^{2}$

Volume $=(a)^{3}$
Diagonal of a cube $=a \sqrt{3}$

Cross-Section

If a cut is made through a solid perpendicular to its length (or height), then the surface so obtained is called its cross-section.

If the surface made by the cut has the same shape and size at every point of length (or height), it is called a uniform cross-section.

Volume $=$ Area of cross-section \times Length (or Height)

Lateral Surface Area $=$ Perimeter of cross-section \times Length (or Height)

Total Surface Area $=$ Area of Lateral Surface + Area of two cross-sections

