
ICSE CLASS 8 LESSON 3 TRANSFORMATION OF SUBSTANCES

Characteristics of chemical reactions

Formation of precipitate

Change in energy

Types of Chemical reactions

 COMBINATION REACTIONS (SYNTHESIS)

 $A + B \rightarrow AB$

E.g. $Ca(OH)_2 + CO_2 \rightarrow CaCO_3$ $N_2 + 3H_2 \rightarrow 2NH_3$

- DECOMPOSITION REACTIONS
- Three types: thermal, electrical, photochemical
- Always endothermic

AB → A+ B

E.g. $CaCO_3 \rightarrow CaO + CO_2$

• DISPLACEMENT REACTIONS

 $A + BC \rightarrow AC + B$

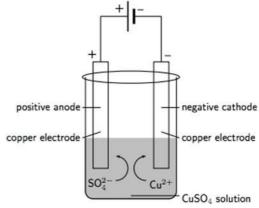
 Depends on Activity series. Higher up metal displaces lower metal

E.g. Fe + CuSO₄ → FeSO₄ + Cu

- DOUBLE DISPLACEMENT
- Neutralization or precipitation

AB + CD→ AD + BC

e.g. NaOH + HCl → NaCl + H₂O Na₂SO₄ + BaCl₂ → BaSO₄ + 2NaCl


Electrolysis

Electrolysis of copper sulphate solution Copper electrodes

Positive, anode, oxidation: No productanode keeps dissolving as more Cu²⁺ ions are formed

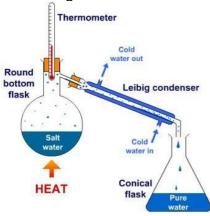
Negative, cathode, reduction: copper

Cu²⁺ + 2e⁻ → Cu

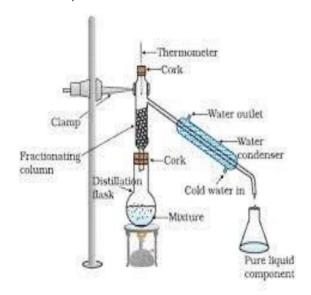
Redox reactions

edox reactions			
Oxidation	Reduction		
Addition of	Addition of		
oxygen, loss of	hydrogen,		
hydrogen	loss of		
	oxygen		
Loss of	Gain in		
electrons	electrons		
Oxidizing	Reducing		
agent gets	agent gets		
reduced	oxidised		
$C + O_2 \rightarrow CO_2$	CH₃CHO →		
	CH₃CH₂OH		
OIL	RIG		
(OXIDATION	(REDUCTION		
IS LOSS)	IS GAIN)		
Redox involves of			
reduction simulta	aneously		
	mes oxidized es electron)		
(1036	es election)		
Na + Cl	→ Na ⁺ +	CI	
77.000 1 2000		1	
_	becomes reduced (gains electron)		
Outd			
Oxid	ation		
$CuO + H_2 \xrightarrow{Heat} Cu + H_2O$			
Reduction			

Electroplating, electrometallurgy and electro refining are important applications of electrolysis


2 important definitions that characterize pure substances

- Boiling point: temperature at which liquid changes to vapour state under normal atmospheric pressure
- Melting point: temperature at which solid changes into liquid at normal atmospheric pressure


 Impurities cause increase in boiling point and decrease in melting point

Distillation

Distillation: purification of water containing dissolved solids

 Fractional distillation: separating 2 liquids with different boiling points e.g. benzene; toluene

Chemical Equations and calculations based on them

Chemical Equations and calculations based on them

Reactants undergo chemical reaction→
Products

Reaction is given in the form of an equation. This equation needs to be balanced

Count the number of atoms of each element on both sides of the equation Multiply both sides with appropriate numerals to ensure that the number of atoms of each element is the same on both sides. Always add numbers as a

prefix, never change the formula of the compound

Example 1

Calculate the molecular mass of CaCO₃ Atomic mass of Calcium=40; C=12;

O = 16

Molecular mass= 40 + 12 + (3 x 16)= 40+12+48= 100u

Example 2

Calculate the amount of CO₂ formed when 8g of methane completely burns in oxygen

$$CH_4 + 2O_2 \rightarrow CO_2$$

 $[12+(1 \times 4)] + 2(2 \times 16) \rightarrow [12 + (2 \times 16)]$
 $16u \qquad 64u \qquad 44u$
 $+ 2H_2O$
 $2[(1 \times 2) + 16]$
 $36u$

Or 16g + 64g → 44g + 36g 16g of methane burns completely to give 44g of carbon dioxide

8g will burn to give 8 x 44/16= 22g Example 3

What is the loss in mass if 50g of calcium carbonate is heated to give calcium oxide?

CaCO₃ →	CaO +	CO_2	
40 + 12 +3 x 16	40 +16	12 + 2	
x 16			
100	56	44	
or 100 g	56 g	44g	
when strongly heated, 100g loses 44g of			
CO ₂			

so 50g will lose 50 x 44/100= 22g Loss in mass =22g